ClaNC: point-and-click software for classifying microarrays to nearest centroids

نویسنده

  • Alan R. Dabney
چکیده

SUMMARY ClaNC (classification to nearest centroids) is a simple and an accurate method for classifying microarrays. This document introduces a point-and-click interface to the ClaNC methodology. The software is available as an R package. AVAILABILITY ClaNC is freely available from http://students.washington.edu/adabney/clanc

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of microarrays to nearest centroids

MOTIVATION Classification of biological samples by microarrays is a topic of much interest. A number of methods have been proposed and successfully applied to this problem. It has recently been shown that classification by nearest centroids provides an accurate predictor that may outperform much more complicated methods. The 'Prediction Analysis of Microarrays' (PAM) approach is one such exampl...

متن کامل

BIOINFORMATICS Classification of Microarrays to Nearest Centroids

Motivation: Classification of biological samples by microarrays is a topic of much interest. A number of methods have been proposed and successfully applied to this problem. It has recently been shown that classification by nearest centroids provides an accurate predictor that may outperform much more complicated methods. The ”Prediction Analysis of Microarrays” (PAM) approach is one such examp...

متن کامل

Regularized Discriminant Analysis and Its Application in Microarrays

In this paper, we introduce a modified version of linear discriminant analysis, called “shrunken centroids regularized discriminant analysis” (SCRDA). This method generalizes the idea of “nearest shrunken centroids” (NSC) [Tibshirani et al., 2003] into the classical discriminant analysis. The SCRDA method is specially designed for classification problems in high dimension low sample size situat...

متن کامل

Class prediction by nearest shrunken centroids,with applications to DNA microarrays

We propose a new method for class prediction in DNA microarray studies, based on an enhancement of the nearest prototype classi er. Our technique uses \shrunken" centroids as prototypes for each class and identi es the subsets of the genes that best characterize each class. The method is general, and can be used in other high-dimensional classi cation problems. The method is illustrated on data...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2006